
CS 0368-4246: Combinatorial Methods in Algorithms (Spring 2025) April 7, 2025

Lecture 4: Cycle Finding and Lower Bounds for Approximation
Algorithms

Instructor:Or Zamir Scribes:Yahav Boneh

1 Introduction

In the previous lecture, we discussed lower bounds for the complexity of algorithms under certain hardness

assumptions. Particularly, we only considered algorithms that give exact solutions. In this lecture, we

will show results on approximation algorithms, and also bound the complexity of cycle finding.

2 Cycle Finding Complexity

We saw several algorithms that find cycles; C2k in O
(
n2

)
, C4 in O

(
m

4
3

)
, C2k+1 in nω, and C3 in m

2ω
1+ω .

The question that arises naturally is: are the cycles of all lengths equivalent?

Claim 1. Finding a triangle in a graph is equivalent to finding a triangle in a 3-partite graph.

Proof. One direction is trivial. For the other, given a graph G = (V,E), consider a graph on the vertices

V ⊔ V ′ ⊔ V ′′ where we connect (i, j′), (i, j′′), (i′, j), (i′, j′′), (i′′, j), (i′′, j′) for every edge (i, j) ∈ E. It is

clear that G contains a triangle if and only if the new graph does, and the new graph is 3-partite.

Claim 2. Given an algorithm for finding C2k+1 in O
(
m1+o(1)

)
time, we can find C3 in O

(
m1+o(1)

)
time

too.

Proof. We may assume, without loss of generality, that we are looking for a triangle in a 3-partite

graph. Let G = (A ⊔B ⊔ C,E) be that graph. In order to translate triangles to cycles of length

2k + 1, replace each edge that goes between B and C by a P2k−1. If there was a triangle in the original

graph, we must have replaced one of its edges by P2k−1, making it C2k+1. For the other direction, let

Ni (1 ≤ i ≤ 2k − 2) be the set of all new vertices which are i edges into the new P2k−1, where we

start counting from B. Clearly, there are no edges in any Ni, and our graph has edges only between

C ↔ A ↔ B ↔ N1 ↔ N2 ↔ · · · ↔ N2k−2 ↔ C. Therefore, if we remove any single set out of

A,B,C,N1, N2, . . . , N2k−2, we are left with a bipartite graph. Bipartite graphs can’t have cycles of odd

length, which means that every C2k+1 in the new graph must go through all of A,B,C,N1, N2, . . . , N2k−2,

so it is in correspondence with a triangle in the original graph.

The same argument won’t work for even cycles, as we won’t be left with a bipartite graph at the end.

Nevertheless, we can use the following claim for even cycles.

Claim 3. Given an algorithm for finding Ck·l in O
(
m1+o(1)

)
time, we can find Ck in O

(
m1+o(1)

)
time

too.

1

Proof. Replace each edge with Pl. It is clear that a Ck·l in the new graph is in correspondence with a Ck

in the original one.

These two claims immediately imply the following theorem.

Theorem 4. If we cannot find C3 in O
(
m1+o(1)

)
time, then we cannot find Ck in O

(
m1+o(1)

)
time for

any k which is not a power of 2. If we cannot find C4 in O
(
m1+o(1)

)
time, then we cannot find Ck in

O
(
m1+o(1)

)
time for any k = 2r (r > 1).

3 Approximation Algorithms

The methods we saw earlier don’t generalize to approximation algorithms. When we build a new graph

as before, it is built specifically for the length of the cycle we want to find. If we look for a different

length, we might find one that does not correspond to the original graph anymore.

3.1 Short Cycle Removal [1]

Intuitively, we will show that every graph G can be quickly transformed into a graph G′ of similar size,

such that

1. C3 ∈ G′ ⇐⇒ C3 ∈ G.

2. For every k′ ∈ [4, k] (where k is a constant), Ck′ ̸∈ G′.

Before making this intuition formal, we establish some more hardness assumptions.

Assumption 5 (Weak Triangle). No algorithm can find C3 in a graph in O
(
m1+o(1)

)
time.

Assumption 6 (Strong Triangle). No algorithm can find C3 in a graph with maxv∈V d(v) ≤
√
n in

O
(
n2−ε

)
time.

Assumption 7 (All Edge Triangle). No algorithm can decide for every edge if it is a part of a C3 in

O
(
n2−ε

)
time.

The last assumption becomes much more plausible with the following theorem, which we do not prove.

Theorem 8. If APSP or 3-Sum are correct, then All Edge Triangle is correct too, even if maxv∈V d(v) ≤√
n and #C3 ≤ n1.6.

Moving forward, we will mainly use the All Edge Triangle assumption, and assume that maxv∈V d(v) ≤
√
n and that #C3 ≤ n1.6. Such graphs have m ≤ n

3
2 , and #Ck ≤ n · (

√
n)

k−1
= n

k+1
2 . The latter bound

is still large, and even for k = 4, we possibly get #C4 = n2.5 >> n2. We would like to decrease the

number of C4s, or Cks in general, to n2−ε.

Theorem 9. Let k ≥ 4, α ∈
(
0, 12

)
and ε ∈

(
0, 3−ω

4

)
. Let G be a graph with maximal degree

√
n.

It is possible, in O
(
n2−ε

)
probabilistic time, to find a subset E′ ⊆ E and a sequence of sub-graphs

G1, . . . , Gs ⊆ G such that:

1. Each edge in E′ is a part of a C3 in G.

2

2. Every edge in E which is a part of a C3 in G is either in E′ or in some Gi.

3. s ≤ n
3
2
−3α, every graph Gi has at most n

1
2
+α vertices and maximal degree at most nα.

4. For every 4 ≤ k′ ≤ k, each Gi has at most n
ω−1
4

+kα+ε cycles of length k′.

The total number of vertices in the new graphs is N ≤ n
3
2
−3α ·n

1
2
+α = n2−2α, the total number of edges

is M ≤ n
3
2
−3α ·n

1
2
+α ·nα = n2−α, and the total number of Ck′s (k

′ ∈ [4, k]) is #Ck′ ≤ n
3
2
−3α ·n

ω−1
4

+kα+ε =

n
3
2
+ω−1

4
+(k−3)α+ε. If we choose a small enough α (dependent on k) and a small enough ε, using the fact

ω < 3, there exists some δ > 0 such that N,M,#Ck′ ≤ n2−δ, where δ ≈ 1
k .

This theorem is not as strong as the intuition described in the beginning of the section; however, we

will see it is still usefull.

Claim 10. Under APSP/3-Sum/All Edges, there is no algorithm that finds t C4s in m1+o(1) + tmo(1)

time.

Proof. Assume towards contradiction that such algorithm exists. We will show a reduction from All

Edges. Let G be a graph (with maxv∈V d(v) ≤
√
n and #C3 ≤ n1.6). Apply Theorem 9 with k = 4. For

every Gi, apply the reduction we saw earlier (transform edges two of the three parts to P2). On every Gi,

run the algorithm (that we assume exists) to find all traingles in Gi in time mo(1) (#C4 (Gi) + #C3 (Gi)).

In order to verify whether an edge actually belongs to a triangle, we will check in O (nα) time. Our total

time complexity after running the first transformation is the sum of:

1. m1+o(1) for every Gi, which sums to M1+o(1) < n2−δ.

2. All of the preexisting C4s times nα — less than n2−δ because there weren’t many C4s.

3. All of the preexisting C3s times nα — also less than n2−δ as #C3 ≤ n1.6.

In conclusion, we have reached a contradiction to the All Edge hypothesis.

Exercise 11 (Distance Oracle). Prove that there is no algorithm that can, after O
(
m1+ 1

100k

)
time

preprocessing, answer (u, v)-queries in time O
(
m

1
100k

)
, where the answer to the query is the distance

between u and v up to a k-factor (the answer should be at least the real distance and at most k times the

real distance).

We provide the proof sketch. start from All Edges, apply Theorem 9 to get G1, . . . , Gs. In every Gi

(assumed to be 3-partite), remove all the edges between two of its parts. Apply the (assumed existing)

algorithm and query each of the removed edges. If the distance if 2, the algorithm won’t return more

than 2k. The main claim is that the algorithm won’t give a false answer too many times.

We proceed to prove Theorem 9.

Proof of Theorem 9. The first idea is that if we create a subgraph of G by keeping each vertex with

probability p, then the number of C3s gets p3 times smaller, while the number of C4 gets p4 times

smaller, significantly less. This idea is formulated in this lemma.

Lemma 12. It is possible to transform a graph G with t C4s to G1, . . . , Cs with our desired sizes and

degress, such that the number of C4s is now ≤ t√
n
· nα, such that every triangle of G still apears in some

Gi.

3

Proof. Without loss of generality, G is a 3-partite graph. Divide each part randomly into n
1
2
−α subparts.

For every three subparts (each from a different main part), create Gi for the induced subgraph on these

vertices. We have s ≤
(
n

1
2
−α

)3
= n

3
2
−3α. The number of vertices in each Gi is |V (Gi)| ≤ n

n
1
2−α

= n
1
2
+α.

The maximal degree in Gi (expected value) is degGi
≤

√
n

n
1
2−α

= nα. By Chernoff, if we would multiply

the upper bound by log n, the probability that it won’t be the case would be ≤ 1
n100 . We also have

#C4 ≤ t · 1

n
1
2−α

= t√
n
· nα, as we need two vertices from the same part to be on the same subpart.

The problem is that we may have t = n (
√
n)

3
= n2.5 C4s, in which case our reduction will give us

n2.5

n0.5 · nα = n2+α >> n2 C4s, which doesn’t help us.

Note: the proof continues only for k = 4 due to time considerations in the lectures.

Our goal is now to take a G under our assumptions and decrease the number of C4s to n2.49. We

will show that every graph with “too many” C4s, there must be a dense subgraph (which we can find

efficiently), and then show that we can answer All Edges problems fast enough for dense graphs. Let

γ = ω−1
4 + ε. We call a subgraph with ≤ 2δn vertices “dense” if it has at least n

1
2
+γ edges. We say that

an edge is dense if it is contained in at least n
1
2
+γ C4s.

Lemma 13. Given a dense edge, we can find a dense subgraph. It can be done efficiently, and we can

efficiently check that it is dense.

Proof. The number of C4s containing (u, v) is the number of edges in N(u) × N(v) (up to a possible

factor of 2). Therefore, if (u, v) is dense, N(u) ∪N(v) is dense.

In order to check if an edge is dense, we will sample n

n
1
2+γ

· log n possible edges between N(u) and

N(v) and check how many exist.

Lemma 14. If #C4 > 10n2+γ, there exists at least n1+γ dense edges.

Proof. We have,

10n2+γ < #C4 <
∑
e

{C4s using e}

≤ n
3
2︸︷︷︸

number of non-dense edges
≤ number of edges

· n
1
2
+γ︸ ︷︷ ︸

not dense

+ t︸︷︷︸
number of dense edges

· n︸︷︷︸
maximal amount of C4s
going through an edge

(1)

Therefore, t > n1+γ .

Corollary 15. A randomly sampled edge is dense with probability n1+γ

n1+1
2
= 1

n
1
2−γ

.

Hence, if will sample edges and test if they are dense, we will find a dense edge in n1−2γ time.

We are left to solve All Edges on the edges of a dense subgraph H. Fix β which will be chosen later.

We divide the neighbors of H (the vertices outside of H which are connected to H) to two parts:

• Vh: vertices with ≥ n
1
2
−β edges into H.

• Vl: vertices with < n
1
2
−β edges into H.

4

For every vertex in Vl, simply test for every two edges going from it to H if they close a triangle. If the

degree of the vertex is d, it takes d2 time. The number of vertices of degree d into H is at most n
d , so

testing all vertices in Vl of degree d into H will take (together) n
d · d2 = nd. Therefore, testing all the

vertices in Vl will take n · n
1
2
−β = n

3
2
−β time in total. We have |Vh| ≤ n

n
1
2−β

= n
1
2
+β. Using fast matrix

multiplication, we can test them in time nβ · (
√
n)

ω
= n

ω
2
+β (divide the n

1
2
+β vertices to nβ subsets of

size
√
n, and run the matrix multiplication on them). There is a value for β > 0 for which both 3

2 −β < 3
2

and ω
2 + β < 3

2 .

In n1−2γ time, we found a subgraph with ≥ n
1
2
+γ edges, and checked if each of them is in a C3 in

n
3
2
−γ time. On average, every edge took n

3
2−γ

n
1
2+γ

= n1−2γ time. Alltogether, we couldn’t have done it for

more than n
3
2

n
1
2+γ

= n1−γ edges, so it took us a total of n2−3γ time. In time << n2, we answered for a

part of the edges, while reducing the number of C4s to << n2.5, from which point we can use the random

reduction.

Exercise 16. Finish the proof for Ck.

References

[1] Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approximation in p via

short cycle removal: cycle detection, distance oracles, and beyond. In Stefano Leonardi and Anupam

Gupta, editors, STOC 2022 - Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of

Computing, Proceedings of the Annual ACM Symposium on Theory of Computing, pages 1487–1500,

USA, September 2022. Association for Computing Machinery. Publisher Copyright: © 2022 ACM.;

54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022 ; Conference date:

20-06-2022 Through 24-06-2022.

5

